• <rp id="oaatq"></rp>
    <rt id="oaatq"></rt>
    <rp id="oaatq"><nav id="oaatq"><button id="oaatq"></button></nav></rp><strong id="oaatq"><span id="oaatq"></span></strong>

    <source id="oaatq"><nav id="oaatq"></nav></source>
    <rt id="oaatq"><optgroup id="oaatq"></optgroup></rt>
    <rp id="oaatq"></rp>
    <rt id="oaatq"><optgroup id="oaatq"><button id="oaatq"></button></optgroup></rt>



    物理講壇2020年第36講:Recent Advances on Theoretical Study of ...

    發布日期:2020-12-27 文章來源:物理科學與技術學院

    物理講壇2020年第36講:Recent Advances on Theoretical Study of Dzyaloshinskii-Moriya interaction at Interface 報告人:楊洪新 中科院寧波材料所 報告時間:2020年12月24日上午9:45 報告地點:龍賽理科樓北樓116會議室 報告簡介: The interfacial Dzyaloshinskii-Moriya interaction (DMI) has attracted significant interest because it plays a tremendous role for fast domain wall motion and allows creation of topological textures, magnetic skyrmions, which are very promising for ultra-dense/ultra low-energy consumption information storage and spintronic devices. A standard ingredient in such devices is an interface between a ferromagnetic metal and a heavy nonmagnetic metal; this interface governs a mechanism proposed by A. Fert and P. Levy in the 80’s, where the heavy metal provides large spin orbit coupling as the energy source to obtain a strong DMI. However, in case of this so-called Fert-Levy type interaction the large spin orbit coupling of the heavy metal is detrimental to performance in device applications. Therefore, looking for materials that are free of heavy metals and yet provide large DMI is critical for their applications in spintronic devices.[1] I will report the discovery that graphene offers a solution in the long quest to replace heavy metals. The concept was demonstrated by first principles calculations and real-space observations, finding that significant DMI can be realized at graphene/ferromagnet interfaces, in absence of heavy metals.[1,2] This DMI is predominantly located at the atomic Co layer directly adjacent to the graphene, and it originates from a Rashba effect. Beyond materials based on the Fert-Levy mechanism, the findings described in this work thus provide a new path for the discovery of a range of topological magnetic materials based on the Rashba effect. These new materials may well prove to be of enormous value in the development of skyrmion- and domain wall-based logic and memory devices. Given the hot current interest in this topic, this work concisely uncovers the microscopic details of the DMI from first principles and experiments, demonstrating an unexpected new property of graphene/ferromagnet interfaces for the first time. This work is therefore one of the first towards a novel field of research called graphene spin-orbitronics, a next generation of graphene spintronics, i.e. they are proposing progress beyond state-of-the-art in these fields of science. Nest, I will report the DMI beyond heterostructures, i.e. using Janus 2D magnets to obtain large DMI and create topological magnetic structures. [3,4] [1] “Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces” H Yang, A Thiaville, S Rohart, A Fert, M Chshiev, Physical Review Letters 115, 267210 (2015) [2] “Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect” Hongxin Yang, Gong Chen, Alexandre A.C. Cotta, Alpha T. N'Diaye, Sergey A. Nikolaev, Edmar A. Soares, Waldemar A. A. Macedo, Andreas K. Schmid, Albert Fert, and Mairbek Chshiev, Nature Materials 17, 605–609 (2018) [3] “Very large Dzyaloshinskii-Moriya interaction in two-dimensional Janus manganese dichalcogenides and its application to realize skyrmion states”J Liang, W Wang, H Du, A Hallal, K Garcia, M Chshiev, A Fert, H Yang Physical Review B 101, 184401 (2020) (Editors’ suggestion) [4] “Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides”Q Cui, J Liang, Z Shao, P Cui, H YangPhysical Review B 102, 094425 (2020)

    上一條:甬江數學講壇141講(2020年第68講) 下一條:物理講壇2020年第35講:晶圓尺寸TiN單晶超導薄膜的物性調控研究


    最挣钱的棋牌游戏 www.tjjdwsbesrq.com:肃南| www.fs-olk.com:乌鲁木齐县| www.jrjhl.com.cn:兰西县| www.soccer-cleats-usa.com:毕节市| www.ciclismonoel.com:蒲江县| www.rglc120.com:咸宁市| www.dracowar-gaming.com:沾化县| www.dlm-music.com:巴林左旗| www.jbjt888.com:岚皋县| www.cillianmurphy.net:子长县| www.tq4h.com:文成县| www.srmcinc.org:罗定市| www.360allred.com:石柱| www.wunderkind56dvoek.net:全南县| www.hdalsdq.com:屏山县| www.caboverdedesign.com:左权县| www.zainvista.com:靖宇县| www.auntcharlottes.com:汕头市| www.wazww.com:当阳市| www.thechamplife.com:白水县| www.cccasas.com:黄陵县| www.sweetarch.com:铜梁县| www.hg10345.com:渭源县| www.sz-jinxuan.com:长治市| www.xzzygg.com:尼玛县| www.xiaoluwu.com:凤冈县| www.lucyssportsbar.com:连州市| www.lzxingcheng.com:新安县| www.tongmould.com:巴里| www.ecurielesvolants.org:依安县| www.tabletite.com:万宁市| www.lgfyj.com:杭锦后旗| www.bieberlc.com:湘阴县| www.dannyquattro.com:辽宁省| www.gotbadgeapp.com:翁源县| www.hg39789.com:蒙自县| www.americanestatebrokers.com:开封市| www.ilmulangka.com:额敏县| www.keytitleva.net:河津市| www.trade-perfect.com:丽水市| www.n2568.com:乌拉特后旗| www.cp5583.com:巩义市| www.jnwbb.cn:厦门市| www.52aiqing.com:昆明市| www.shouhui1.com:老河口市| www.tourth.com:绥化市| www.chevroletbandung.com:于都县| www.mosmedia.net:龙井市| www.csoam.com:蒲城县| www.michaeltrevillion.com:汽车| www.223980.com:吉林市| www.di1da.com:慈利县| www.f5767.com:故城县| www.jb908.com:筠连县| www.yinxiu669.com:岳西县| www.66356tt.com:盐亭县| www.bahqb.cn:锡林浩特市| www.baijiale55.com:洛隆县| www.cp3557.com:藁城市| www.henllyy.com:扎鲁特旗| www.jordanegasc.com:南安市| www.brand-gate.com:海宁市| www.allsignsbycos.com:济阳县| www.elihunter.com:都昌县| www.practicalitstrategy.com:揭西县| www.xczc1.com:扶绥县| www.21toygame.com:邓州市| www.ctr-fk2register.com:阳谷县| www.myqccoupons.com:乌海市| www.90wlog.com:留坝县| www.yh9983.com:西林县| www.anfibiorecords.com:铜陵市| www.new-vibrations.com:宁晋县| www.1shoupifa.com:灌阳县| www.primpandwear.com:虹口区| www.lsyqsm.com:大竹县| www.bpgpd.com:深泽县| www.attitude-digital.com:江门市| www.lan-tour.com:噶尔县| www.liyoujiaju.com:峨边| www.schmitzfinefood.com:延庆县| www.yzasiaexpo.com:类乌齐县| www.lebronsoldiershoes.com:凌海市| www.ypymw.cn:德钦县|