• <rp id="oaatq"></rp>
    <rt id="oaatq"></rt>
    <rp id="oaatq"><nav id="oaatq"><button id="oaatq"></button></nav></rp><strong id="oaatq"><span id="oaatq"></span></strong>

    <source id="oaatq"><nav id="oaatq"></nav></source>
    <rt id="oaatq"><optgroup id="oaatq"></optgroup></rt>
    <rp id="oaatq"></rp>
    <rt id="oaatq"><optgroup id="oaatq"><button id="oaatq"></button></optgroup></rt>

    寧波大學

    學術活動

    甬江數學講壇141講(2020年第68講)

    發布日期:2020-12-27 文章來源:數學與統計學院

    報告題目:Integrable systems: what they are and how many? 報 告 人:王敬萍(University of Kent 教授) 報告時間:2020年12月29日 下午5:00開始 報告地點:ZOOM會議鏈接:https://zoom.us/j/7323017223?pwd=RisyVGJteUU3eU50ZlZvdFd1NTZrUT09 Meeting ID: 732 301 7223 Passcode: nbu2021 報告摘要:Integrable systems belong to an exceptional class of nonlinear equations, which can be studied with the same completeness as linear systems, at least in principle. They possess a rich set of exact solutions and many hidden properties. Classification of integrable equations is a central problem. There are many approaches to this problem, among which the symmetry approach has proved to be very efficient and powerful. In this talk, I'll give a brief account of recent development of the symmetry approach. The progress has been achieved mainly due to a symbolic representation of the ring of differential polynomials, which enables us to use results from algebraic geometry and number theory. 報告人簡介: 王敬萍,英國肯特大學教授、博士生導師,可積系統領域專家,在國際著名雜志CMP, Theoret. and Math. Phys., Phys. D, Stud. Appl. Math., J. Math. Phys., Nonlinearity, J. Differential Equations, Inverse Problems, J. Nonlinear Sci. 等發表論文五十多篇。

    上一條:未來·認知·包容 2020設計工效學國際研討會 下一條:物理講壇2020年第36講:Recent Advances on Theoretical Study of ...

    關閉

    最挣钱的棋牌游戏 www.swaggjewels.com:彭州市| www.hiitblog.com:哈密市| www.simgiaihan.com:万州区| www.absabsolutely.com:尉犁县| www.suntikputihdahlia.net:克东县| www.187296.com:定襄县| www.decartlab.com:施甸县| www.wynnwords.com:临颍县| www.83-bits.com:离岛区| www.shfyhg.com:吉首市| www.digitalcartonprinter.com:平潭县| www.damoa33.com:阿克| www.fg556.com:鹿泉市| www.mynwabulgaria.com:华池县| www.hg75456.com:论坛| www.jieseteng.com:寻甸| www.n6768.com:乐东| www.goldenliongames.com:宜黄县| www.votegregwalker.com:夏河县| www.40photography.com:仪征市| www.abgxx.com:襄垣县| www.xyzgnh.com:平凉市| www.poengun.com:民丰县| www.payapal-biz.com:醴陵市| www.webcamquestion.com:临颍县| www.christaiceforest.com:牡丹江市| www.henllyy.com:波密县| www.xwjsw.cn:黄梅县| www.lostin90.com:洪洞县| www.firewateroside.com:镇巴县| www.4tud.com:平潭县| www.shaltiv.com:花莲县| www.speaklan.com:宝应县| www.everyounggroup.com:玉门市| www.hotmusicpick.com:梅河口市| www.jtjdg.cn:莱芜市| www.shamrockestatesaz.com:桃园市| www.clutchsdelpotosi.com:通辽市| www.notokfittings.com:瑞金市| www.pf955.com:灵璧县| www.maidou5.com:全南县| www.shyfgy.com:平原县| www.henglian-sh.com:北海市| www.associazionesimbiosigratteri.com:彰化市| www.i-infidelity.com:灵台县| www.coolphotolibrary.com:搜索| www.kaimasu-online.com:内江市| www.dm019.com:云和县| www.gxdz66.com:富宁县| www.h-lm.com:长春市| www.czyxjx.com:静宁县| www.szabo-enterprises.com:海阳市| www.s9692.com:宁强县| www.skywzpt.com:阿城市| www.bozhce.com:祁阳县| www.cskxd.com:南和县| www.foodtechnologys.com:周口市| www.aureliogonzalez.com:加查县| www.sihushiping.com:辽中县| www.didacticosedima.com:婺源县| www.speaklan.com:舞钢市| www.pnindustry.com:唐河县| www.yongtaikym.com:普格县| www.f7565.com:云安县| www.com51job.com:泸定县| www.insect-museum.com:井研县| www.atlanteventuresmezzogiorno.com:遵化市| www.nj-tyjx.com:会东县| www.rh2010.com:长泰县| www.chambres-dhotes-le-cigalon.com:天柱县| www.cloud-place.com:锡林郭勒盟| www.baochimc.com:揭东县| www.airshipapperal.com:朝阳县| www.serviceideas-blog.com:南宫市| www.razorcrusaders.com:郸城县| www.cp8559.com:株洲市| www.iphonecheckbook.com:牙克石市| www.cxrzdz.com:东山县| www.v8f4.com:新津县| www.instantasshole.com:敦煌市| www.917wm.com:皮山县| www.ivanerofeev.com:革吉县| www.e2aa.com:衡阳县| www.gayboyfetisch.net:菏泽市|