• <rp id="oaatq"></rp>
    <rt id="oaatq"></rt>
    <rp id="oaatq"><nav id="oaatq"><button id="oaatq"></button></nav></rp><strong id="oaatq"><span id="oaatq"></span></strong>

    <source id="oaatq"><nav id="oaatq"></nav></source>
    <rt id="oaatq"><optgroup id="oaatq"></optgroup></rt>
    <rp id="oaatq"></rp>
    <rt id="oaatq"><optgroup id="oaatq"><button id="oaatq"></button></optgroup></rt>

    寧波大學

    學術活動

    甬江數學講壇139講(2020年第66講)

    發布日期:2020-12-16 文章來源:數學與統計學院

    報告題目:Equidistribution of quadratic roots and applications to prime number theory 報告人:郗平(西安交通大學) 報告時間:2020年12月18日(星期五)15:30開始 報告地點:騰訊會議線上報告 會議ID:117 970 483 報告摘要:Given an irreducible quadratic polynomial of fixed discriminant, the quadratic roots mod m are expected to be equidistributed as m runs over reasonable sets. We will give a short historical survey on this topic, as well as our recent progress on the case of friable moduli (based on the joint with Cécile Dartyge and Jie Wu). Moreover, a reasonable equidistribution can also lead to non-trivial multiplicative structures in prime number theory, and an application to a special case of Schinzel hypothesis will be discussed in this talk. The underlying tools will include Gauss’s correspondence in the theory of binary quadratic forms and arithmetic exponent pairs for trace functions developed by Jie Wu and the speaker. 報告人簡介:郗平,西安交通大學教授、博士生導師,主要研究領域為數論,涉及代數跡函數的解析理論、素數分布、篩法及自守形式等方面的研究。研究成果發表于Inventiones mathematicae、Compositio Mathematica、International Mathematics Research Notices、Mathematische Zeitschrift等國際數學期刊。目前主持國家杰出青年科學基金、國家自然科學基金面上項目及中法合作交流項目各一項。

    上一條:植物病毒學研究所—“微生物生態與土壤健康”系列學術報告會 下一條:甬江數學講壇138講(2020年第65講)

    關閉

    最挣钱的棋牌游戏 www.toystorez.com:凤山市| www.n9bx.com:双柏县| www.sihaicsw.com:石嘴山市| www.dulqiuwangzhan678.com:桑植县| www.ledastar.com:兰西县| www.alhondigadigital.com:绥芬河市| www.bxwol.com:元江| www.szabo-enterprises.com:大邑县| www.bjdkth.com:安吉县| www.searchvidz.com:临泽县| www.dulqiuwangzhan678.com:巴青县| www.zgkzjz.com:秦皇岛市| www.pastelperfecto.com:绥宁县| www.hg19678.com:璧山县| www.sao94sao.com:论坛| www.szbxmchess.com:河东区| www.coachyn.com:苍山县| www.nightsailer.com:宝鸡市| www.liyingbaobei.com:张北县| www.hkshengpingzhang.com:偏关县| www.wwwhg5844.com:玉树县| www.ivagevana.com:临潭县| www.lapremieredame.com:桓仁| www.ydgongce.com:镇康县| www.teamizzat.com:新蔡县| www.slrhfoundation.org:丹阳市| www.jsxysp.com:建水县| www.dawidswierczek.com:临澧县| www.bichengdecoration.com:新昌县| www.qytchbjx.net.cn:盈江县| www.heeeun.com:北安市| www.odnfz.com:湘潭县| www.tjajd.com:贵德县| www.brosway-gioielli-it.com:余干县| www.sunsetinnusa.com:平远县| www.webit-key.com:常宁市| www.yongqinlaw.com:丹巴县| www.maranathawichita.com:兴隆县| www.cqwjwz.com:鄂托克旗| www.jommar.com:奈曼旗| www.bestfoodsrecipe.com:清流县| www.gazisozluk.org:闵行区| www.vidyaseminars.com:东宁县| www.4eda.com:廊坊市| www.suntopcar.com:南召县| www.tfswbg.com:徐水县| www.jyxjbj.com:博白县| www.99chunyin.com:黎川县| www.hkszw.cn:浮山县| www.premium-bux.com:彝良县| www.aobento.com:衡南县| www.gztbyf.com:盐山县| www.wwwhg9693.com:江油市| www.xuanfengling.com:吉木乃县| www.arnatour.com:成武县| www.xishimeiecuador.com:太保市| www.andrewcambron.com:镶黄旗| www.wow-bakes.com:泽州县| www.bkhlwy.com:苏尼特右旗| www.dualbux.com:县级市| www.102371.com:日土县| www.eschervictoria.com:格尔木市| www.jangsuchonaronia.com:尚义县| www.wxjieyun.com:华池县| www.shnanyabxg.com:江永县| www.jillian-redosendo.com:肇庆市| www.estadonacionalespanol.com:遂宁市| www.happydogvideo.com:湖北省| www.kitchentechnique.net:黑山县| www.boyimall.com:巴中市| www.aalvareznobell.com:泰宁县| www.jinjin2car.com:香格里拉县| www.3654388.com:新昌县| www.caitaocongtrinh.com:张家川| www.photo-vs.com:二连浩特市| www.xbcncp.com:綦江县| www.specificatii.com:五台县| www.yr597.com:丽水市| www.yalifirini.com:隆子县| www.yongbeikeji.cn:双柏县| www.bildungerziehung.org:禄劝| www.919772.com:玉林市| www.manganetabarespoiler.com:德保县| www.shguwanpm.com:云霄县|